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Abstract— To be able to create an ideal energy source
in the future - an artificial photosynthetic complex, the
first step is a detailed understanding of the function of
photosynthetic complexes in living organisms. Knowledge
of the microscopic structure of some photosynthetic systems
and their function invokes during last twenty years long and
intensive investigation of many theoretical and experimental
laboratories. Photosynthesis starts with the absorption of a
solar photon by one of the light-harvesting (LH) pigment-
protein complexes and transferring the excitation energy to
the reaction center where a charge separation is initiated.
The geometric structure of such LH complexes is known
in great detail, e.g. for the LH2 and LH4 complexes of
purple bacteria. Absorption and steady state fluorescence
spectra of exciton states for ring molecular system, which
can model the peripheral cyclic antenna unit LH4 of the
bacterial photosystem from purple bacteria are presented. The
cumulant-expansion method of Mukamel et al. is used for the
calculation of spectral responses of the system with exciton-
phonon coupling. Dynamic disorder, interaction with a bath,
in Markovian approximation simultaneously with uncorrelated
static disorder in local excitation energies are taking into
account in our simulations. We compare calculated absorption
and steady state fluorescence spectra for LH4 ring obtained
within the full Hamiltonian model with our previous results
calculated within the nearest neighbour approximation model.
All calculations were done in software package Mathematica.

Keywords—LH4, absorption and fluorescence spectrum,
static and dynamic disorder, exciton states, Mathematica

I. INTRODUCTION

Solar energy is the primary source of energy on
Earth. Its transformation provides the chemical energy
ensuring the development of the vast majority of living
beings. The effective recovery, processing and storage of
solar energy is a major challenge but this energy would
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be a perfect answer to current energy needs. Photovoltaic
systems can harvest solar energy and transform it into
electricity. But this latter form of energy has the disad-
vantage of being difficult to store.

The natural chemical processes mastered the solar
energy through the process of photosynthesis. In pho-
tosynthesis, solar energy is converted to chemical en-
ergy. The chemical energy is stored in the form of
glucose (sugar). Photosynthesis occurs in two stages.
These stages are called the light reactions and the dark
reactions. The light reactions convert light into energy
(ATP and NADHP) and the dark reactions use the energy
and carbon dioxide to produce sugar. In the process of
photosynthesis (in plants, bacteria, and blue-green algae),
solar energy is used to split water and produce oxygen
molecules, protons and electrons. The perfect solution
of above mentioned problem would be to get the energy
produced by photosynthesis in plants or bacteria directly.
Or we should be able to copy this process that billions
of years of evolution have perfected in order to convert
solar energy into chemical energy as hydrogen, which
is easier to store than electricity. To be able to copy the
process of photosynthesis it is necessary to know in great
detail the structure and properties of organisms in which
photosynthesis takes place.

Photosynthesis starts with the absorption of a solar
photon by one of the light-harvesting pigment-protein
complexes and transferring the excitation energy to the
photosynthetic reaction center, where a charge separa-
tion is initiated. These initial ultrafast events have been
extensively investigated. Knowledge of the microscopic
structure of some photosynthetic systems, e.g., photo-
synthetic systems of purple bacteria, invokes during last
twenty years long and intensive effort of many theoretical
and experimental laboratories. No final conclusion about
the character of exited states, energy transfer, etc. can be
generally drawn.

A wide variety of pigment-protein complex are used
as light-harvesting (LH) antennas to intercept light to
meet the demand for energy of photosynthetic organisms.
Each type of antenna complex has its own specific
absorption spectrum, thereby optimizing the efficiency of
light absorption depending on environmental conditions.
Light energy that is absorbed by an LH antenna is then
rapidly and efficiently transferred to a reaction center
(RC), where it is used to drive a transmembrane charge
separation. At this point the light energy has been trapped
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and the chemistry begins [1]. The number of antenna
complexes per RC depends on light intensity in which the
bacterium is grown. When grown under high-intensity
conditions, less antenna complexes are required to let
the RC operate at a maximal turnover rate. However, at
low intensity conditions the ratio of antenna complexes
to RC increases significantly [2].

The antenna systems of photosynthetic units from
purple bacteria are formed by ring units LH1, LH2, LH3,
and LH4. The geometric structure is known in great de-
tail from X-ray crystallography. The general organization
of above mentioned light-harvesting complexes is the
same: identical subunits are repeated cyclically in such a
way that a ring-shaped structure is formed. However the
symmetries of these rings are different.

The core antenna LH1 contained in purple bacteria
such as Rhodopseudomonas palustris consists of ap-
proximately 16 structural subunits in which two bacte-
riochlorophyll a (BChl-a) molecules are noncovalently
attached to pairs of transmembrane polypeptides. These
subunits are arranged in a ringlike structure which sur-
round the RC. In the near infrared LH1 absorbs at 870
nm. More about crystal structure of this core complex is
possible to find e.g. in [3].

Crystal structure of LH2 complex contained in pur-
ple bacterium Rhodopseudomonas acidophila in high
resolution was first described by McDermott et al. [4]
in 1995, then further e.g. by Papiz et al. [5] in 2003.
The bacteriochlorophyll molecules are organized in two
concentric rings. One ring features a group of nine well-
separated BChl molecules (B800) with absorption band
at about 800 nm. The other ring consists of eighteen
closely packed BChl molecules (B850) absorbing around
850 nm. LH2 complexes from other purple bacteria have
analogous ring structure.

Some bacteria express also other types of complexes
such as the B800-820 LH3 complex (Rhodopseudomonas
acidophila strain 7050) or the LH4 complex (Rhodopseu-
domonas palustris). Details of crystal structure for LH3
complex are stated e.g. in [6] and for LH4 in [2].
LH3 like LH2 is usually nonameric but LH4 is oc-
tameric. While the B850 dipole moments in LH2 ring
have tangential arrangement, in the LH4 ring they are
oriented more radially. Mutual interactions of the nearest
neighbour BChls in LH4 are approximately two times
smaller in comparison with LH2 and have opposite sign.
The other difference is the presence of an additional BChl
ring in LH4 complex.

The intermolecular distances under 1 nm determine
strong exciton couplings between corresponding pig-
ments. Due to the strong interaction between BChl
molecules, an extended Frenkel exciton states model is
considered in our theoretical approach. Despite intensive
study of bacterial antenna systems, e.g. [2], [4], [5], [7],
the precise role of the protein moiety for governing the

dynamics of the excited states is still under debate. At
room temperature the solvent and protein environment
fluctuate with characteristic time scales ranging from
femtoseconds to nanoseconds. The simplest approach is
to substitute fast fluctuations by dynamic disorder and
slow fluctuation by static disorder.

In our previous papers we presented results of simula-
tions doing within the nearest neighbour approximation
model. In several steps we extended the former inves-
tigations of static disorder effect on the anisotropy of
fluorescence made by Kumble and Hochstrasser [8] and
Nagarajan et al. [9]–[11] for LH2 rings. After studying
the influence of diagonal dynamic disorder for simple
systems (dimer, trimer) [12]–[14], we added this effect
into our model of LH2 ring by using a quantum master
equation in Markovian and non-Markovian limits [15]–
[17].

We also studied influence of four types of uncor-
related static disorder [18], [19] (Gaussian disorder in
local excitation energies, Gaussian disorder in transfer
integrals, Gaussian disorder in radial positions of BChls
and Gaussian disorder in angular positions of BChls on
the ring). Influence of correlated static disorder, namely
an elliptical deformation of the ring, was also taken into
account [20]. The investigation of the time dependence
of fluorescence anisotropy for the LH4 ring with different
types of uncorrelated static disorder [21]–[23] was also
done.

Recently we have focused on the modeling of absorp-
tion and steady state fluorescence spectra. Our results
for LH2 and LH4 rings within the nearest neighbour
Hamiltonian model have been presented in [24]–[31].
Very recently we have started to work within full Hamil-
tonian model and the results for LH2 complex have been
presented in [32].

Main goal of the present paper is the comparison of the
results for LH4 ring calculated within full Hamiltonian
model with the previous results calculated within the
nearest neighbour approximation model. In our simula-
tions we have taken into account uncorrelated diagonal
static disorder in local excitation energies simultaneously
with diagonal dynamic disorder (interaction with phonon
bath) in Markovian approximation.

Present paper is the extension of our contribution [33]
presented on WSEAS conference ECC’13. The rest of
the paper is structured as follows. Section II. introduces
the ring model with the uncorrelated static disorder and
dynamic disorder and the cumulant expansion method,
which is used for the calculation of spectral responses of
the system with exciton-phonon coupling. In Section III.
the computational point of view for our calculations is
discussed. The graphically presented results of our sim-
ulations and used units and parameters could be found
in Section IV. Finally in Section V. some conclusions are
drawn.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 7, 2013 449



II. PHYSICAL MODEL

We assume that only one excitation is present on the
ring after an impulsive excitation. The Hamiltonian of an
exciton in the ideal ring coupled to a bath of harmonic
oscillators reads

H0 = H0
ex +Hph +Hex−−ph. (1)

Here the first term,

H0
ex =

∑
m,n(m6=n)

Jmna
†
man, (2)

corresponds to an exciton, e.g. the system without any
disorder. The operator a†m (am) creates (annihilates) an
exciton at site m, Jmn (for m 6= n) is the so-called
transfer integral between sites m and n. The second term,

Hph =
∑
q

h̄ωqb
†
qbq, (3)

represents phonon bath in harmonic approximation (the
phonon creation and annihilation operators are denoted
by b†q and b−q, respectively). Last term in (1),

Hex−ph =
1√
N

∑
m

∑
q

Gmq h̄ωqa
†
mam(b†q + bq), (4)

describes exciton-phonon interaction which is assumed to
be site-diagonal and linear in the bath coordinates (the
term Gmq denotes the exciton-phonon coupling constant).

Inside one ring the pure exciton Hamiltonian can be
diagonalized using the wave vector representation with
corresponding delocalized ”Bloch” states α and energies
Eα. Considering homogeneous case with only the nearest
neighbour transfer matrix elements

Jmn = J0(δm,n+1 + δm,n−1) (5)

and using Fourier transformed excitonic operators (Bloch
representation)

aα =
∑
n

aneiαn, (6)

where
α =

2π

N
l, l = 0,±1, . . . ,±N

2
, (7)

the simplest exciton Hamiltonian in α - representation
reads

H0
ex =

∑
α

Eαa
†
αaα, (8)

with
Eα = −2J0 cosα (9)

(see Fig. 1 - left column). In case of the full Hamil-
tonian model (dipole-dipole approximation), energetic
band structure slightly differs (Fig. 1 - right column).
Differences of energies in lower part of the band are
smaller and in upper part of the band are larger in
comparison with the nearest neighbour approximation
model.

Fig. 1. Energetic band structure of the ring from LH4 (left column
- the nearest neighbour approximation model, right column - full
Hamiltonian model.

Influence of uncorrelated static disorder is modeled by
the local excitation energy fluctuations δεn with Gaussian
distribution and standard deviation ∆

Hs =
∑
n

δεna
†
nan. (10)

The Hamiltonian Hs of the uncorrelated static disorder
adds to the Hamiltonian H0

ex.
The cumulant-expansion method of Mukamel et al.

[34], [35] is used for the calculation of spectral responses
of the system with exciton-phonon coupling. Absorption
OD(ω) and steady-state fluorescence FL(ω) spectrum
can be expressed as

OD(ω) = ω
∑
α

d2α×

×Re

∫ ∞
0

dtei(ω−ωα)t−gαααα(t)−Rααααt, (11)

FL(ω) = ω
∑
α

Pαd
2
α×

×Re

∫ ∞
0

dtei(ω−ωα)t+iλααααt−g∗αααα(t)−Rααααt. (12)

Here
~dα =

∑
n

cαn
~dn (13)

is the transition dipole moment of eigenstate α, cαn are
the expansion coefficients of the eigenstate α in site
representation and Pα is the steady state population of the
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eigenstate α. The inverse lifetime of exciton state Rαααα
is given by the elements of Redfield tensor Rαβγδ [36].
It is a sum of the relaxation rates between exciton states,

Rαααα = −
∑
β 6=α

Rββαα. (14)

The g-function and λ-values in (12) are given by

gαβγδ = −
∫ ∞
−∞

dω

2πω2
Cαβγδ(ω)×

×
[
coth

ω

2kBT
(cosωt− 1)− i(sinωt− ωt)

]
, (15)

λαβγδ = − lim
t→∞

d

dt
Im{gαβγδ(t)} =

=

∫ ∞
−∞

dω

2πω
Cαβγδ(ω). (16)

The matrix of the spectral densities Cαβγδ(ω) in the
eigenstate (exciton) representation reflects one-exciton
states coupling to the manifold of nuclear modes. In what
follows only a diagonal exciton phonon interaction in site
representation is used (see (1)), i.e., only fluctuations of
the pigment site energies are assumed and the restriction
to the completely uncorrelated dynamical disorder is
applied.

In such case each site (i.e. each chromophore) has its
own bath completely uncoupled from the baths of the

other sites. Furthermore it is assumed that these baths
have identical properties [16], [37], [38]

Cmnm′n′(ω) = δmnδmm′δnn′C(ω). (17)

After transformation to the exciton representation we
have

Cαβγδ(ω) =
∑
n

cαnc
β
nc
γ
nc
δ
nC(ω). (18)

Various models of spectral density of the bath are used
in literature [39]–[41]. In our present investigation we
have used the model of Kühn and May [40]

C(ω) = Θ(ω)j0
ω2

2ω3
c

e−ω/ωc (19)

which has its maximum at 2ωc.

III. COMPUTATIONAL POINT OF VIEW

To have steady state fluorescence spectrum FL(ω) and
absorption spectrum OD(ω), it is necessary to calculate
single ring FL(ω) spectrum and OD(ω) spectrum for
large number of different static disorder realizations
created by random number generator. Finally these re-
sults have to be averaged over all realizations of static
disorder. Time evolution of exciton density matrix has to
be calculate also for each realization of static disorder.
That is why it was necessary to put through numerical
integrations for each realization of static disorder (see
(12)).

Fig. 2. Calculated fluorescence (FL) and absorpion (OD) spectra of
LH4 ring (full Hamiltonian model) averaged over 2000 realizations
of static disorder in local excitation energies δεn (low temperature
kT = 0.1 J0, four strengths ∆ = 0.1, 0.2, 0.3, 0.4 J0).

Fig. 3. Calculated fluorescence (FL) and absorption (OD) spec-
tra of LH4 ring (the nearest neighbour approximation model) av-
eraged over 2000 realizations of static disorder in local excita-
tion energies δεn (low temperature kT = 0.1 J0, four strengths
∆ = 0.1, 0.2, 0.3, 0.4 J0).
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Fig. 4. Calculated fluorescence (FL) and absorption (OD) spectra of
LH4 ring (full Hamiltonian model) averaged over 2000 realizations
of static disorder in local excitation energies δεn (room temperature
kT = 0.5 J0, four strengths ∆ = 0.1, 0.2, 0.3, 0.4 J0).

Fig. 5. Calculated fluorescence (FL) and absorption (OD) spectra
of LH4 ring (the nearest neighbour approximation model) aver-
aged over 2000 realizations of static disorder in local excitation
energies δεn (room temperature kT = 0.5 J0, four strengths
∆ = 0.1, 0.2, 0.3, 0.4 J0).

Fig. 6. Peak position distributions of calculated steady-state single
ring fluorescence (FL) spectra of LH4 ring at room temperature
kT = 0.5 J0 (first row) and low one kT = 0.1 J0 (second row)
for 2000 realizations of Gaussian uncorrelated static disorder in local
excitation energies δεn – four strengths ∆ = 0.1, 0.2, 0.3 0.4 J0 (full
Hamiltonian model – left column; nearest neighbour approximation
model – right column).

For the most of our calculations the software package

Mathematica [42] was used. This package is very conve-
nient not only for symbolic calculations [43] which are
needed for expression of all required quantities, but it
can be used also for numerical ones [44]. That is why
the software package Mathematica was used by us as for
symbolic calculations as for numerical integrations and
also for final averaging of results over all realizations of
static disorder.

IV. RESULTS

Above mentioned type of uncorrelated static disorder,
e.g. fluctuations of local excitation energies, has been
taken into account in our simulations simultaneously with
diagonal dynamic disorder in Markovian approximation.
Resulting absorption OD(ω) and steady state fluores-
cence FL(ω) spectra for LH4 ring obtained within the
full Hamiltonian model are compared with our previous
results calculated within the nearest neighbour approxi-
mation model.

Dimensionless energies normalized to the transfer
integral J0 (J0 = J12 in LH2 ring) have been used. Esti-
mation of J0 varies in literature between 250 cm−1 and
400 cm−1. The transfer integrals in LH4 ring have oppo-
site sign in comparison with LH2 ring and differ also in
their absolute values. Furthermore, stronger dimerization
can be found in LH4 in comparison with LH2 [2].
Therefore we have taken the values of transfer integrals
in LH4 ring as follows: JLH4

12 = −0.5JLH2
12 = −0.5J0,

JLH4
23 = 0.5JLH4

12 = −0.25J0. All our simulations of
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Fig. 7. Distributions of the quantity
∑

α
Pαd

2
α as a function of

wavelength λ in room temperature kT = 0.5 J0 for four strengths
of Gaussian uncorrelated static disorder in local excitation energies
(full Hamiltonian model).

Fig. 8. Distributions of the quantity
∑

α
Pαd

2
α as a function of

wavelength λ in room temperature kT = 0.5 J0 for four strengths
of Gaussian uncorrelated static disorder in local excitation energies
(nearest neighbour approximation model).

LH4 spectra have been done with the same values of
J0 = 370 cm−1 and unperturbed transition energy from
the ground state E0 = 12280 cm−1, that we found for
LH2 ring (the nearest neighbour approximation model)
[24].

The model of spectral density of Kühn and May [40]
has been used in our simulations. In agreement with our
previous results [18], [23] we have used j0 = 0.4 J0 and
ωc = 0.212 J0 (see (19)). The strengths of uncorrelated
static disorder has been taken in agreement with [19]:
∆ = 0.1, 0.2, 0.3, 0.4 J0.

Resulting absorption spectra OD(ω) and steady state
fluorescence spectra FL(ω) averaged over 2000 realiza-
tions of static disorder in local excitation energies δεn
for full Hamiltonian model can be seen in Figure 2
(low temperature kT = 0.1 J0) and in Figure 4 (room
temperature kT = 0.5 J0). The same but for the nearest
neighbour approximation model can be seen in Figure 3
(low temperature kT = 0.1 J0) and in Figure 5 (room
temperature kT = 0.5 J0).

Peak position distributions of steady state fluorescence
spectrum for single LH4 ring depend on the realization
of static disorder and also on the temperature. The results
of our simulations for both models (the nearest neighbour
model and full Hamiltonian model) are presented in
Figure 6.

For clarification of fluorescence line splitting appear-
ance in case of full Hamiltonian model, the quantity∑
α Pαd

2
α (Pα is the steady state population of the

eigenstate α, d2α is the dipole strength of eigenstate α, see

12) as a function of wavelength λ has been investigated.
The distributions of this quantity for room temperature
kT = 0.5 J0 and 2000 realizations of static disorder are
presented in Figure 7 (full Hamiltonian model) and in
Figure 8 (the nearest neighbour approximation model).

V. CONCLUSIONS

Software package Mathematica has been found by us
very useful for the simulations of the molecular ring
spectra. From the comparison of our simulated FL and
OD spectra for LH4 ring within full Hamiltonian (FH)
model (Figures 2, 4) with our previous results calculated
within the nearest neighbour approximation (NN) model
(Figures 3, 5) we can make following conclusions.

No significant differences between the results calcu-
lated within FH model and NN one can be seen in case
of low temperature kT = 0.1 J0.

On the other hand the resulting spectra differ in case of
room temperature kT = 0.5 J0. The absorption spectra
OD(ω) for FH model in case of room temperature kT =
0.5 J0 are slightly wider in comparison with NN model.

For both models we can see indication of fluorescence
spectra splitting especially for higher strengths of static
disorder ∆. In case of FH model the splitting appears
already for ∆ = 0.2 J0, while in case of NN model
the splitting is visible just for ∆ = 0.3 J0. This effect
is caused by different energetic band structures for both
models (see Fig. 1). The optically active states in case
of LH4 complex are the upper states α = ±7 (unlike
LH2 with lower optically active states α = ±1). In case
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of room temperature kT = 0.5 J0 upper states are more
probably occupied and that is why the splitting can be
seen only in this case (unlike LH2, where the splitting
is visible only in case of low temperature kT = 0.1 J0
and FH model).

As concern the peak position distributions (see Figure
6), we can conclude that the distributions are wider for
full Hamiltonian model in comparison with the nearest
neighbour approximation model. The distributions of the
quantity

∑
α Pαd

2
α presented in Figure 7 and Figure 8

are shifted to higher wavelengths in case of full Hamil-
tonian model in comparison with the nearest neighbour
approximation model.
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[27] D. Zapletal, P. Heřman, Simulation of molecular ring emission spectra:
localization of exciton states and dynamics, International Journal of
Mathematics and Computers in Simulation 6, 2012, pp. 144–152.
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